Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

A. Jeyabharathi, ${ }^{\text {a }}$ M. N.

Ponnuswamy, ${ }^{\text {a }}$ S. Narasimhan ${ }^{\text {b }}$ and S. Velmathi ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and ${ }^{\text {b }}$ Centre for Natural
Products, Spic Science Foundation, Guindy, Chennai 600 032, India

Correspondence e-mail: mnpsy@hotmail.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.047$
$w R$ factor $=0.142$
Data-to-parameter ratio $=16.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Diisopropyl 2-(2-benzoyl-1-phenylethyl)malonate

In the title compound, $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{5}$, the keto group is planar. Weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds play a significant role in the crystal packing.

Comment

A number of compounds derived from chalcones possess multi-protecting biochemical activities, such as antifungal, antimalarial, antifertility etc. The biological activity of these compounds depends on the conformation of the keto group present in the molecule. Chalcones and their derivatives show inhibitory action against S. aureus, F. graminearum and B. alli (Marrian et al., 1947). These compounds are also toxic to red spider mites (Eaton \& Davis, 1950).

(I)

In the title molecule, (I), the bond distances are found to agree with the literature values (Allen et al., 1987). The bond angles at phenyl rings A and B show no significant deviations from the standard value, except around atoms C14 and C19. The slight distortion in the exocyclic bond angles at C14 and C19 may be due to the steric interactions between the isopropyl groups and phenyl rings. The dihedral angle between phenyl rings A and B is $83.8(2)^{\circ}$ and they are oriented at angles of $8.7(1)$ and $87.0(1)^{\circ}$, respectively, to the keto group. The $\mathrm{O} 5-\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$ torsion angle of -17.7 (3) ${ }^{\circ}$ shows that the molecule assumes an s-cis conformation for the keto system. Apart from van der Waals interactions, the packing of the molecules in the crystal is stabilized by intermolecular $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ interactions and one intramolecular interaction (Desiraju, 1991, 1996).

Experimental

To 1 mmol of LiAlH_{4} in dry tetrahydrofuran (THF), 1 mmol of methyl 2-[N-(2-hydroxyphenylmethyl)amino]-3-methylbutanoate was added at room temperature in a dried side-arm flask and stirred

Received 20 December 2001
Accepted 14 January 2002
Online 28 February 2002

A view of the title compound, showing the atom-numbering scheme, with probability ellipsoids drawn at the 30% level.
for 4 h . To the stirred solution, 1,3-diphenyl-2-propen-1-one (5 mmol) and diisopropyl malonate (5 mmol) were added and stirring was continued for 7 h . The reaction was monitored throughout by thinlayer chromatography (TLC) until all the diisopropyl malonate had reacted. The reaction was quenched with $1 N \mathrm{HCl}$ and the rpoduct was extracted with ethyl acetate. The combined organic layer was washed with NaHCO_{3} and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent under reduced pressure gave a syrupy mass which, on flash column chromatography, yielded a crystalline solid. Colourless needle-shaped crystals were obtained by slow evaporation at room temperature from a hexane-ethyl acetate (1:1) mixture.

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{5}$
$M_{r}=396.46$
Triclinic, $P \overline{1}$
$a=6.031$ (1) A
$b=10.215$ (1) \AA
$c=19.069(1) \AA$
$\alpha=74.76$ (1)
$\beta=89.11(1)^{\circ}$
$\gamma=76.87(1)^{\circ}$
$V=1102.6(2) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.194 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Cu} \mathrm{~K} \mathrm{\alpha} \text { radiation }
\end{aligned}
$$

Cell parameters from 25 reflections
$\theta=14-25^{\circ}$
$\mu=0.67 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle, colourless
$0.20 \times 0.20 \times 0.15 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4
diffractometer diffractometer $\omega-2 \theta$ scans
Absorption correction: none 4453 measured reflections 4204 independent reflections 2392 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.019$

$$
\begin{aligned}
& \theta_{\max }=71.9^{\circ} \\
& h=-7 \rightarrow 6 \\
& k=0 \rightarrow 12 \\
& l=-22 \rightarrow 23 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 200 \text { reflections } \\
& \text { frequency: } 120 \text { min } \\
& \text { intensity decay: }<0.1 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.142$
$S=1.01$
4204 reflections
262 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

O1-C1	$1.199(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.543(3)$
$\mathrm{O} 2-\mathrm{C} 1$	$1.333(3)$	$\mathrm{C} 3-\mathrm{C} 19$	$1.517(3)$
$\mathrm{O} 2-\mathrm{C} 6$	$1.465(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.535(3)$
$\mathrm{O} 3-\mathrm{C} 9$	$1.199(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.508(3)$
$\mathrm{O} 4-\mathrm{C} 9$	$1.329(3)$	$\mathrm{C} 5-\mathrm{C} 14$	$1.492(3)$
$\mathrm{O} 5-\mathrm{C} 5$	$1.212(3)$		
$\mathrm{C} 14-\mathrm{C} 5-\mathrm{C} 4$	$118.8(2)$	$\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 13$	$118.4(2)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 8$	$113.1(2)$	$\mathrm{C} 20-\mathrm{C} 19-\mathrm{C} 24$	$118.1(2)$
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 12$	$112.6(2)$		
$\mathrm{C} 9-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 19$	$-170.52(17)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 5$	$17.7(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 19$	$-48.0(2)$		

Table 2
Hydrogen-bonding geometry $\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}$	0.98	2.57	$3.509(3)$	161
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{O} 3$	0.97	2.41	$3.063(3)$	124
$\mathrm{C} 7-\mathrm{H} 7 A \cdots 1^{\mathrm{ii}}$	0.96	2.54	$3.437(3)$	156

Symmetry code: (i) $1+x, y, z$; (ii) $x-1, y, z$.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: $S D P$ (Frenz, 1978); data reduction: XCAD-4-PC (Harms \& Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: PARST97 (Nardelli, 1983, 1995).

AJ thanks the University Grants Commission for the award of a teacher fellowship under FIP.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1-S19.

Desiraju, G. R. (1991). Acc. Chem. Res. 24, 290-296.
Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441-449.
Eaton, J. K. \& Davis, R. G. (1950). Ann. Appl. Biol. 37, 471-489.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP. Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld \& G. C. Bassi, pp. 64-71. Delft University Press.

Harms, K. \& Wocadlo, S. (1996). XCAD4-PC. University of Marburg, Germany.
Marrian, D. H., Russell, P. B. \& Todd, A. R. (1947). J. Chem. Soc. pp. 14191420.

Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.

